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ABSTRACT
Given the rise in popularity of cloud computing and platform-
as-a-service, vulnerabilities in systems which share hardware
have become more attractive targets to malicious actors. One of
the vulnerabilities inherent to these systems is the potential for
side-channels, especially ones that violate the isolation between
virtual machines..

In this paper, we introduce a novel side-channel which func-
tions across virtual machines. The side-channel functions through
the detection of out-of-order execution. We create a simple duplex
channel as well as a broadcast channel. We discuss possible adver-
saries for the side-channel and propose further work to make the
channel more secure, efficient and applicable in realistic scenarios.
In addition, we consider seven possible malicious applications of
this channel: theft of encryption keys, program identification, envi-
ronmental keying, malicious triggers, determining virtual machine
co-location, malicious data injection, and covert channels.
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1 INTRODUCTION
Cloud computing often involves the virtualization of multiple
hosts on a single physical host. The cloud abstracts away the
real hardware allowing users to instantly allocate any virtual
hardware or share hardware with other users.

This approach offers major advantages for business. First and
foremost, it is an efficient allocation of resources. Flexibility of re-
sources is another big advantage. Both of these have been driving
the adoption of cloud computing in business.

These advantages come at a cost though. Sharing hardwarewith
untrusted parties incurs serious security risks. Multiple virtual ma-
chines (VMs) often share the same physical device with the expec-
tation that VMs are isolated from each other. This can be achieved
throughmemory control and other permissions, but there areways
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to overcome this isolation. One way to violate isolation is to com-
municate through the shared physical characteristics of computing
on the same machine.

Much existingwork on cross-VM channels focus on the scenario
of an attacker exfiltrating cryptographic keys [30][2]. Zhang et al.
demonstrate an L1 instruction cache side-channel across VMs to
extract an ElGamal decryption key across VMs [33] . Tromer et al.
use cache access patterns to determine the use of AES keys within
the process [25]. Another approach uses rare instructions to flush
and reload the L3 cache to leak information about keys [10]. One
recent work goes so far as locking and unlocking the memory bus
for the entire computer to communicate across VMs [3]. These ap-
proaches use unusual instructions in contrived setups which are
difficult to hide from any curious party.

In this work we present a novel channel between VMs based
on a processor optimization technique called out-of-order execu-
tion. This optimization technique is usually transparent to the pro-
gram, but can be detected in programs with multiple threads. The
frequency of out-of-order execution increases when CPU load in-
creases. This correlation can be used to send messages between
VMs that are co-resident, i.e. reside on the same physical machine.
We construct a channel between VMs running on Xen hypervisor.
We analyze the signal and noise characteristics when adding addi-
tional VMs on the same physical machine and consider both pas-
sive and active adversaries. Finally, we consider sevenmalicious ap-
plications of this channel: theft of encryption keys, program iden-
tification, environmental keying, malicious triggers, determining
VM co-location, malicious data injection, and side-channels.

2 OUT-OF-ORDER EXECUTION
2.1 Background
Out-of-order execution, also known as dynamic scheduling, is a
direct result of processor optimization[23]. To increase processing
power, modern CPU architectures implement multi-staged pipelin-
ing, allowing for simultaneous execution of multiple instructions.
Ideally, this occurs every clock cycle at full capacity, however con-
ditions arise which degrade the overall performance time of the
machine. These degrading conditions are called hazards. One such
hazard is caused by an instruction which requires a great deal of
cycles followed by another instruction which requires its output[8,
24]. For example, take loads and stores tomainmemorywhich both
require many more cycles than an arithmetic operation. If the in-
formation used in either instruction is necessary for future oper-
ations, the processor creates a bubble to avoid a potential hazard
which results in computational errors[23]. This bubble is a delay
in the instruction pipeline until the hazard has passed.
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Processor optimization fills in the resulting pipeline bubbles
with instructions that have been determined not to depend on the
current pending ones. This is called out-of-order execution, when
instruction execution order in the processor is not the order listed
in the program.

All hazards resolved by this method result in a pipeline order
which is determined by the processor to be executed without haz-
ards. However the processor does return the output to the higher
processes in the order that it was given, ideally with the logically
correct computation results[24].

At least one type of out-of-order execution is observable by the
program itself and is known as memory reordering [15]. Memory
reordering can occur in several ways in the x86 memory model [9],
the focus of experiments in this paper. Every processor instruction
set architecture has a memory model which guarantees when
loads and stores will occur on the processor. Memory reordering,
although mostly unheard of outside of low-level programming
communities, is actually easy to demonstrate [19].

2.2 Our Channel
We use a multi-threaded program that facilitates memory reorder-
ing. Certain scenarios, in which the processor reorders the instruc-
tions, have a computation result that is not expected. Take for ex-
ample two threads, one with initial values X = 0 and r1 = 0, the
other with initial values Y = 0 and r2 = 0. When the program
executes, X = Y = 1 and a swapping occurs where r1 = Y and
r2 = X . Logically, the expected final values of r1 and r2 should
be respectively 0, 1 or 1, 0 depending on which thread executes
fastest, alternatively in the case of syncing threads, 1, 1 may also
be expected. However, if the thread instructions are executed out-
of-order, where r1 and r2 are set before the values ofY andX , then
the final values of r1 and r2 will be 0, 0. A diagram of the actual
measurement process is seen in Figure 1.

This output can be exploited as an information leak, revealing
the processor’s behavior, possibly caused by other cycle intensive
programs. The two threaded program described above will react
to these external environment changes in the form of having an
increased likelihood of returning the out-of-order (0, 0) pairs. Iter-
ating through this model many times returns an average frequency
of out-of-order executions inside a certain reference frame. Com-
paring this frequency against a baseline frequency exposes valu-
able system information of all processes running on a certain set
of shared cores. In the rest of this paper we explore the use of this
information as a channel through which two programs can com-
municate.

2.3 Channel Design
We initially sought to construct a very simple channel to act as a
proof-of-concept before creating an optimized channel that would
be functional in a realistic environment. This channel is meant as
a proof-of-concept for the contrived testing environment where
there are only a few virtual machines running.

The channel is comprised of a rudimentary sender and receiver.
Each of these is specifically tailored to either create or measure the
amount of out-of-order executions. Most of the testing is done to
guarantee that our channel can indeed generate bits. Once that is

Initialize
x=0, y=0

r1=0, r2=0

x=1
r1=y

y=1
r2=x

bucket1++

bucket2++

bucket3++

bucket4++

Case1: r1=0, r2=0

Case2: r1=0, r2=1

Case3: r1=1, r2=0

Case4: r1=1, r2=1

[true]

count < n

[false]

Figure 1: A diagram of a program with two threads which
swap values. The variables x and y are memory locations,
and r1 and r2 are registers. The result of (r1 = 0, r2 = 0) can
only occur when out-of-order execution occurs.

the case, we then also create a channel for sending small bit strings
by assigning one period of activity followed by one period of inac-
tivity to be a 0 bit. Two contiguous periods of activity represent
the 1 bit.

2.4 Shared Channel
There are two main cases for enhancing the way this channel
works. It can either be used as a broadcast or multicast channel
by sending a single message to many receivers. Also, multiple
senders can be used in tandem to create amplified out-of-order
execution frequencies which would give the receivers much more
predictable thresholds ; therefore decreasing the span of a single
time frame fi needed to avoid false bits and increasing the bits
per second rate of the channel.

One important factor to note is that background noise gener-
ated by idle or non participant virtual machines can be easily mit-
igated since this will only change the amplitude of the gaussian
zero centered white noise causing an upwards shift in all average
out-of-order execution frequencies without causing much distor-
tion. Our signal will still be just as high above the noise as when
the noise is distributed around zero.

2.5 Broadcast Channel
This channel could be very effective as a broadcast channel since
all receivers distributed on the virtual machines co-located on the
same hardware will get the same message as they will all read the
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same frequency of out-of-order executions, possibly with a slight
shift in amplitude of out-of-order executions between each virtual
machine. This however eliminates the chance of having a multi-
cast channel. If unintended receivers are aware of how the channel
works and are monitoring the out-of-order executions then there
is no way to only send the message to certain receivers and not
others.

2.6 Receiver
A time frame f is a set in which a program iterates a set num-
ber of times over code. At the end of each iteration variables are
checked to determine if out-of-order execution has occurred. This
is then added to a summation, denoted by kr , which represents
the total number of out-of-order executions which occurred after
time frame fi is complete. The summed total is then compared to a
threshold value, θ , in order to determine which bit the Sender was
transmitting. The set number of opportunities, which compose a
single time frame, can be increased in order to have a larger win-
dow in which to collect out-of-order executions. This results in a
higher likelihood for success in receiving the correct bit. Alterna-
tively, this number can be decreased in order to allow for a fast re-
ceipt of the final sum of order executions. This results in a quicker
reading of the sent bit, while decreasing the accuracy.

The channel must have a preset time period in which an arti-
fact is measured multiple times from the hardware. The average
of these measurements can then be mapped to a single bit signal.
The receiver or sender is constructed as a program which has a set
number of iterations over the reception or transmission code used
to take a single measurement from the hardware medium. Each
iteration is one measurement and the number of iterations is the
number of measurements averaged together. The time it takes for
this number of iterations is a single time frame, fi , used to measure
a single bit.

The set number of iterations can be dynamically or statically in-
creased in order to have a larger window in which to collect hard-
ware measurements. This results in a higher likelihood for success
in receiving the correct average measurement which maps to the
correct bit.

Alternatively, this number can be decreased in order to allow
for a fast receipt of a bit which decreases accuracy. This relation-
ship holds true for n time frames in series used to collect an n bit
message. In Figure 2, a series of time frames in series form a bit
stream.

fi = time f rame to measure a bit

As there is one bit sent per time frame, the bandwidth of the chan-
nel, represented as bi , is inversely correctly to fi .

bi =
1
fi

The time frame fi is dependent on the constraints of the hardware
medium across which the channel is built. This is an artifact of the

1

Bit Stream

fi

Figure 2: Example Bit Stream, each 1 represents a time frame
in which there were more out-of-order executions than the
baseline reading. 0 represents the opposite.

time a single hardware measurement takes to collect by the pro-
cess. For example, hardwaremedia located further from the proces-
sor will most likely have longer minimum time frames as it takes
longer for a single query to physically reach the component.

3 EXPERIMENTAL METHODOLOGY
3.1 Physical Setup
We setup our lab to mimic the configuration you will find on many
cloud services. We ran the latest version of Citrix’s Xenserver
hypervisor on a machine with 8 processors and 24GBs of RAM.
This simulates a smaller scale cloud for experimentation. The
VM’s were kept very simple. They were all running windows 7
and only had core programs, our sender, and our receiver.

3.2 Experiments
The experiments below were each done twice. Once with the
Sender mentioned above where the out-of-order execution could
be more finely controlled. The second time with a script doing
simple computation in a Cygwin bash shell. This second Sender is
implemented to show that the channel could be actualized using a
more discreet method that would be less likely to be noticed in a
real world scenario. The idea of using common user applications
to trigger certain levels of out-of-order execution when run in
specific ways has implications for both discrete Senders as well
as identification by the Receiver of the processes peripheral
virtual machines are running. Each experimental run consisted
of both the receiver transmitting ten thousand opportunities and
the sender listening for ten thousand opportunities. The only
processes open were the virtual machines unless specified, as is
the case in which additional background noise is added.

3.3 Testing Hypothesis
From initial testing results and observations we determined sev-
eral interesting behaviors unique to this channel. Our experiments
used three main overarching variables. The number of senders, re-
ceivers, and idle virtual machines. The receiver can be modified
but for the purposes of showing basic emergent patterns and be-
haviors of the channel we chose to fix common parameters and
only modify the number of VM’s acting as one of our main vari-
ables. By fixing two of the variables and only changing onewe note
three main characteristics of this channel.
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Firstly, as the number of senders is increased, the channel
strength is amplified and the number of out-of-order executions
increase. Second, increasing the number of receivers results in
similar messages but with different amplitudes. The receivers
themselves by nature of how they are detecting out-of-order exe-
cutions also create an amplification on the channel, although not
to the same extent as the sender. Finally we note that increasing
the number of idle VM’s doesn’t have a significant impact on the
channel other than a slight change in base noise, and a slight
increase in the amplitude.

4 APPLICATIONS
We construct a side-channel which sends and receives informa-
tion by exploiting out-of-order execution. This side-channel is de-
ployed across virtual machine instances that reside on a Xen hyper-
visor and are co-located. Additionally, the environment contains
four benign virtual machines idling on the system to mimic a live
cloud computing environment. All virtual machines share the cen-
tral processing unit.

We then construct seven different attacks as listed in Section
4.2.4 across this side-channel using the same out-of-order execu-
tion sending or receiving processes.

4.1 Theft of Encryption Keys
The first set of attacks are theft of cryptographic keys. Applications
of this set are classified as being an exfiltrating side-channel attack
which relies exclusively on a receiving application. The intended
attack leaks the secret key of an encryption algorithm.

In literature, the use of a hardware side-channel to leak private
keys is widely used to attest to the precision as well as the threat
level of the side-channel. These include attacks against running
encryption and decryption processes as well as a spectrum of algo-
rithms including AES, ElGamal, DES, and RSA [17, 18, 26, 33].

Specifically, we attempt to demonstrate this attack in a simple
lab setting with one active client and one malicious virtual ma-
chine. This removes the variable element of noise from the proof-
of-concept attack.

Additionally, we target a simple XOR encryption algorithm in-
side a victim process. The client implementation uses C++ and a
randomly generated encryption key. Each byte is randomly chosen
between a range of ten and a hundred.

The attack begins immediately after the client virtual instance
launches its encryption function and ends after. During this time
frame, the receiver inside the malicious virtual machine records
out-of-order execution patterns from the shared central process-
ing unit. This is done in using the protocol discussed in the first
few subsections of Section 4. The bit pattern which is recorded is
then a function of the XOR operations executed by the victim’s
encryption process.

The encryption process was run 100 times, re-encrypting the
same basic string of length 64 filled with ASCII ’A’s. Every other set
of eight bytes are XOR-ed using a randomly generated byte, each
XOR uses 7000 small XORs of the same number for the purpose of
testing the proof-of-concept. The seed for this random factor was
provided by the standard C++ rand() function.

The reason we chose to only XOR every other set of eight
bytes was to create an obvious fluctuation between central
processor contention. The purpose of this was to generate binary
activity, either encryption activity or none, by the encryption
proof-of-concept on the CPU in order to reliably receive executed
operations in the malicious virtual machine. Future work may
include the application of intelligent algorithms to the current,
simplistic receiver in order to parse and identify leaked CPU
behavior induced by higher order encryption algorithms. The
receiving application eavesdrops from the co-located, malicious
virtual machine and runs the out-of-order execution recording
process outlined earlier in this section.

The receiver implemented for this attack was able to reliably
identify the different XOR blocks and non-XOR blocks of eight
bytes, or sixteen bits, which were executed by the targeted en-
crypting process. However, there was a lack of granularity in the
received number of out-of-order executions per time frame which
prohibited us from mapping specific levels of out-of-order execu-
tions to the values randomly used in the byte-XOR. Instead, each
block of out-of-order executions were declared either a ’1’ or a
’0’. A ’1’ refers to values received in a time frame which may be
mapped, with a degree of certainty, to a XOR operation being ex-
ecuted by the victim. A ’0’ implies no XOR was taking place. The
recorded result of this attack may be seen in Figure 3.

It is apparent that the blocks of out-of-order execution contain-
ing bit strings of ’1’ are mappable to the byte blocks which were
XOR-ed, the XOR-ed bytes are represented by a single byte, ’B’.
The four encrypted blocks of eight bytes each, shown above, took
the receiver 4.9525 seconds on average to leak across the central
processing unit with a standard deviation of 0.15606 seconds.

Using the eight byte block method to create clear time frames
of encryption, the receiver was able to map blocks of active-XOR
and nonactive encryption with an accuracy of 85.9%. This accuracy
is high enough to confidently map the periods of high and low
operations in our chosen encryption algorithm.

The success of this attack lies in the ability for the malicious
virtual machine to leak active behavior from the co-resident pro-
cess. This may be seen as an attack on both the privacy aspect of
transparent behavior by a client in cloud computing environments.
Also, this attack highlights the possibility of a simplistic, but suc-
cessful attempt to learn the victim’s encryption algorithm used by
a process.

Future work on this topic includes learning algorithms as well
as general improvements on the reception channel to achieve in-
creased precision rates. Additionally, this would allow an attacker
to better connect different out-of-order execution patterns with
complex encryption schemes as well as specific numeric values
being used in them.

4.2 Active Program Identification
Using this side-channel, an adversary can eavesdrop on concur-
rent processes. Attacks of this type can uniquely identify co-active



Out-of-Order Execution as a Cross-VM Side-Channel and Other Applications ROOTS, November 16–17, 2017, Vienna, Austria

Starting Bytes:
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA

Encrypted Bytes:
AAAAAAAA BBBBBBBB AAAAAAAA BBBBBBBB

Bits Leaked:
0000000000000001 1011011011111101 0000000000000010

1111111101011101

Figure 3: The encrypted string compared to the leaked
string.

applications as well as some more prominent functions. In this at-
tack, the processes eavesdrops on system behavior using the chan-
nel defined above. Recording specific, repeated out-of-order execu-
tion patterns allows an attacker tomap behavior to specific process
identifiers.

We ran this attack one hundred times. Each duration lasted
for 32 time frames, or roughly 3 seconds. During these runs, five
co-located virtual machines were actively running. The targeted
virtual machine was running instances of YouTube inside Google
Chrome.

For our proof-of-concept, we sought to eavesdrop on this VM
and confidently identify, with a high degree of certainty, what ap-
plication, if any, was being run.

For each period of reception, the malicious application would
record a bit stream of length 32. The pattern of bits averaged over
several runs was then used to classify the co-active process as ei-
ther being a high or low generator of out-of-order execution. From
there, the average bit pattern could then be mapped to a prere-
corded pattern of a known active Chrome session stored inside the
malicious application binary.

The average time of each run was 3.13294 seconds, assuming
the program was recording a bit stream of length 32. There were
five co-located VM’s sharing the central processing unit with the
one virtual machine actively running the victim process.

The standard deviation of this experiment was 0.14234 seconds.
The success rate of mapping active, unknown applications to one
of two sets , either out-of-order execution generators or not, was
100%. However given more system noise, such as the numerous
applications which would be co-resident in a highly active cloud
server, the addition of higher order algorithms need to be applied
to parse out identifying information from a system.

The lab environment contained six virtual machines running
on a single Xen server. Under these conditions, the specific iden-
tification of a running instance of Chrome, as opposed to other
programs artificially used to generate noise, was successful on a,
average of 93%. This is significantly high enough to reliably iden-
tify a client running video instances inside this browser process.

The success of this basic attack carries implications on both
a privacy and information security level as well as on a systems
level. When concurrent processes continually leak data across vir-
tual machines, the privacy of a user’s activity may be called into
question.

Future work on this topic includes further testing and averaging
to create a larger database of patterns mapped to their associated

processes, i.e. Safari, Firefox, or IE, under different system loads,
i.e. while 1 virtual machine is running or 10.

The possibility for a mapping is shown to exist through our
preliminary work. Given the possible precision an attack could
achieve, identification of specific program execution by a client is
detectable. An example of this precise identification may be an at-
tack confidently identifying a user’s physical input into a running
program.

Bits Leaked from System Baseline Activity:
...0000 000000000 000000000 00000000 000000000 000000000...

Bits Leaked from Client Running Chrome:
...0100 010101011 010101011 01010010 010101011 010010010...

Figure 4: The bit stream leaked through the receiver show-
ing the repeating pattern associated with running videos in
Chrome.

If Figure 4, the results of this described attack may be observed
in two different segments of the bits leaked from the CPU’s out-of-
order execution. In this receiver, each bit represents 100,000 indi-
vidual out-of-order execution checks average together in order to
reduce the affect of noise on the final bit stream. Each bit of this
continual stream was recorded, on average, in 0.18806 seconds. As
can be seen, while the victim was not running any programs, the
bit stream was entirely ’0’; however, after opening Chrome to play
a video, the bit stream stabilized into the pattern shown above. This
specific test was repeated 100 times in order to positively identify
a mapping between the targeted application and out-of-order exe-
cution patterns exfiltrated from the system.

4.3 Environmental Keying
Environmental keying attacks rely exclusively on the receiving
side-channel application. These channels are defined as using only
a reception process to record out-of-order execution patterns as a
bit stream. This stream represents the environment in which the
malicious virtual machine resides[21].

For our specific implementation of an application from this at-
tack, we chose to implement a simple environmental keying mali-
cious program. The attack contains two distinct phases. The first is
a malicious virtual machine which runs an environmental keying
side-channel program to generate a unique key used to identify the
system. The second stage uses a program located on a victim vir-
tual machine that contains an encrypted payload. This application
uses a replicated receiver to record system out-of-order execution
patterns. If the patterns recorded match the targeted pattern iden-
tified by the malicious host, the malware decrypts its payload.

The crux of this attack lies in the generation of a unique en-
vironmental key which identifies the targeted environment. This
allows a malicious application to gain location-awareness in order
to expose its malicious behavior only when located on the proper
virtual machine [21, 31, 32].

For our simplified implementation of this attack scenario, we
set up 6 virtual machines on a Xen server with one machine cat-
egorizes as the malicious host and another as the victim. The re-
ceiver on the host VM receives a bit stream, the unique identifier,
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using the out-of-order execution receiver discussed earlier in this
section.

A malicious application with an encrypted payload and the
unique ID may then be dropped onto the target VM. This mali-
cious process immediately begins the duplicated receiving process
to eavesdrop on the central processing unit behavior and ID the
environment. If the identifiers match, it unpacks the payload and
executes.

Host identity-based encryption may also be possible using this
attack setup assuming the unique identifying string can be 100%
recovered by the malicious process running inside the targeted vir-
tual machine. This may require future work in channel optimiza-
tion and averaging out system noise. We show that a unique identi-
fier can be recovered by 83%which allows the application to decide
if the identifier it records and the one pre-recorded by the host ma-
licious virtual machine are close enough to confidently assert that
the environment is the right one and execute accordingly.

The host virtual machine ran the out-of-order execution
receiver to collect a key of length 32 bits, this averaged out to
27.29 seconds, or 3.41 seconds per 4 bit segments and a standard
deviation of 0.064 seconds. An example of a unique environment
key can be see in figure 4.

This key was then encoded into the deployed malware contain-
ing the encrypted dropperwhichwas then installed on the targeted
virtual machine. Once started, the application began the out-of-
order execution receiver to record the same length bit stream as
the host receiver captured. This 32 bit sequence was compared to
the encoded bit stream representing the environment in which the
malware should unpack.

This process was executed for 100 trials to compute an average
percent similarity between the environment the malware was in
and the expected environment identifier. Under the contrived cir-
cumstances of this laboratory setting, we found that the malware
recorded an environmental identifier which correctly matched its
environment to the one represented by the host’s encoding identi-
fier with 96.87% accuracy. This matching was deemed sufficiently
high to identify the targeted system.

Future work on this subset of malicious applications can build
from the use an out-of-order execution side-channel to identify
unique environment keys. This work will include creating intel-
ligent algorithms to better record individual bits based on the fre-
quency of out-of-order executions. The goal would be to generate
a receiver which can guarantee a repeatable reception of a specific
bit stream. Once the key can be guaranteed, it may be used in the
actual encryption/decryption on the payload.

In the current status of the attack, the received environment
key can be deemed similar enough to correctly identify the sys-
tem. This allows the receiver to be used as a binary decider. If the
bit stream eavesdropped off the CPU is close by a given threshold
to the original recorded by the host, the environment is positively
identified and themalware executes. This inherently poses a threat
to the privacy and security of virtual machines stored in the cloud
and leaks valuable location information. As this attack was suc-
cessful, future development on applications in this category also
show potential to successful exfiltration.

4.4 Signal Trigger of Process
This attack model requires a transmitting as well as a reception
process which are located on two distinct co-resident virtual ma-
chines. Additionally, it requires a pre-arranged time frame as both
processes must have overlapping active periods for the success of
the attack.

Either the sending process transmits continually waiting for the
receiver read the signal. Or the receiving processes idles until it
reads a one time signal.

Both methods rely on the use of message transmission across
our constructed channel, to exploit forced variance in the out-of-
order executions off of the CPU. The channel processes use the
same algorithms outlined earlier in this section and used by all
attacks described in this paper.

Figure 5: Use of the central processor in synced, concurrent
time frames allows the transmission of a signal between two
colluding applications in real time.

In figure 5, the use of the continually operating receiver can be
seen. The receiver reads out-of-order execution patterns from the
shared central processing unit in pre-arranged time frames. At the
start, the transmitting program transmits the signal "111.." as a bit
stream. It forces high levels of out-of-order executions repeatedly
for several time frames. Each time frame represents a single bit.
The receiver detects the high bit stream and launches its intended
attack.

The resulting length of time necessary to run four bits in this
described attack one hundred times repeatedly in the same envi-
ronment is 1.79025 seconds with a standard deviation of 0.07816.

The environment of this laboratory system contains six idling
virtual machines of which only two are active. One is the malicious
host containing the sending process and other contains the recep-
tion process which is continually listening for the beacon signal.
Additionally, we assume the co-location of the two interactivity
virtual machines could be verified prior to the attack. The ability
for an accurate time frame to be calculated from inside different
virtual machines is also assumed.

Experimentation with this attack using multiple transmitting
processes from inside different virtual machines to increase the



Out-of-Order Execution as a Cross-VM Side-Channel and Other Applications ROOTS, November 16–17, 2017, Vienna, Austria

frequency of the forced out-of-order executions seen across the
shared central processing unit by the targeted receiving process,
resulted in degradation of the signal’s precision.

Initially, increasing the number of senders did improve the
broadcast signal’s bandwidth. However, using the maximum
number of machines virtually allocated on one physical server
increased the noise to an amplitude higher than the out-of-order
execution signal. This meant that the precision gained through
multiple senders increasing the bandwidth was minimized by
the noise of the system, forcing miss-reads in the receiver and
failing the attack. Further experimentation is needed to test the
limits of increasing signal strength through introducing additional
concurrent senders versus increasing system load and noise levels.

Building more complex attacks off of this simple triggering sig-
nal requires little effort on the part of the advisory. This advisory
to wrap the receiver in a obfuscating program with an arbitrary
payload to execute upon receiving the signal.

Our basic attack model implemented to transmit a signal be-
tween two colluding parties co-located on shared hardware real-
izes a basic proof-of-concept channel attack. The implications of
this simplistic, exfiltration vector span across violations of both
unauthorized data access as well as active interference with the
target’s private virtual machine.

4.5 Adversarial Data Injection and Alteration
A final type of adversary, which can be built on this out-of-order
execution side-channel, is destroying the integrity of the instruc-
tions being used to compute values in the victim process. It is clas-
sified as an infiltrating side-channel attack. This adversary can be
built using the the transmitting methods described in this paper.
The purpose of this attack is to force contention of central process-
ing unit resources as well as pointedly alter the order of critical
instructions used for computations by the target thread.

In literature, the contention of any resource which negatively
affects the targeted user is often referred to as a Denial-of-Service
attack (DoS) [7, 16]. This elemental intrusion of the user’s envi-
ronment does not require the least level of precision compared to
other attacks discussed in this paper.

Compared to other adversarial models, this attack requires the
greatest, consistent signal amplitude in order to significantly im-
pede the CPU computations for the co-active processes. The diffi-
culty with this interference comes from the hypervisor’s resource
scheduler and optimizations which attempt to decrease the con-
stant load caused by the transmitter.

To consistently force out-of-order executions in the processor,
the transmitter must use larger time frames, fi . This allows the
transmitter to execute more out-of-order execution generating as-
sembly code to account for the few instructions which are opti-
mized out of the time frame, fi , by the hypervisor.

The effect of large time frames is an increased execution time
for the attack.We implement a specific attack which attempts to in-
terfere with the target’s computations through increasing the out-
of-order executions in the processor.

After a certain threshold level of these executions, the processor
returns invalid or reordered values to the target process, thereby

meeting our requirements for a denial-of-service attack. In our sce-
nario, the service required by the target process is processor execu-
tion of specifically ordered instructions to result in precise values.
Additionally, invalid return values have more interesting applica-
tion in the art of exploitation; however using it effectively will re-
quire future research and greater precision.

The predicted increase in the minimum duration needed to
successfully execute a DoS attack is seen in our implementation,
against an isolated victim process running in four consecutive
time frames, fi . The average run time of 2.21538 seconds is
measured from one hundred tests run on a Xen server with 6
virtual machines. The standard deviation these runs is 0.11023
seconds.

These results imply that the increase in bandwidth of the
transmitted signal effects the precision of each run and generating
higher variance in minimum time frame durations needed to
interfere with the victim process. Additionally, the increase in
signal strength from using multiple sending processes added noise
to the out-of-order executions read in each time frame.

Combined, the decrease in precision from the larger fi and the
noise from the larger number of sending processes used to increase
signal strength adversely affected the intended binary transmis-
sion. The attack operated successfully with the use of one to four
virtual machines, operating at a threshold above the generated
noise and variance. However, the attack failed under five virtual
machines operating the transmission process. 5 virtual machines
used to send a broadcast signal to clog the processor is the limit of
the signal strength for the size of the laboratory Xen environment.

The attack success was measured in value miscalculation as
computed for the victim process. On average, the successful
runs of attack caused a 50% value loss in the computation of the
targeted operations. The target process ran a while loop which
read from an array and, in two threads, multiplied it by a constant
value, storing the results back in the same index. This array could
then be compared to the expected values pre-computed at the
end. Out-of-order values meant that the processor did not obey
program order, showing that the adversary was successful for the
time frame of that array index’s computation.

Example Target Process Array Before Calculations
[7, 4, 0, 9, 2, 8, 5, 7, 0, 9, 8, 7, 1, 2, 9, 4, 8, 5, 7, 3, 0, 2, 8]
Target Process Array After Multiplication with 5
[35, 20, 0, 9, 10, 8,5, 35, 0, 45, 8,7,1, 10, 45, 20, 8, 25, 7, 15, 0, 2,8]
Target Process Array Expected Calculations
[35, 20, 0, 45, 10, 40, 25, 35, 0, 45, 40, 35, 5, 10, 45, 20, 40, 25, 35, 15
0, 10, 40]

Figure 6: The array values before and after computation.

Figure 6 shows values of the array which were adversely affect
during the computation due to the out-of-order executions forced
by the malicious transmitting process. The success of this specific
attackwas 43.43% based on the number of stores in the arraywhich
were reordered to occur prior to the multiplication instruction. Ad-
ditional testing to determine limitations of this attack on larger
scale cloud environments will help. Increased noise tightens the
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boundaries of malicious applications which fall under this cate-
gory.

4.6 Determine VM Co-Location
One fundamental requirement to create a side-channel is establish-
ing co-location of the virtual machines. These virtual machines
must share one or more hardware components. This requirement
is discussed in Section 1 and 2.

This application exploits out-of-order execution on the central
processing unit to create a side-channel. It then verifies co-location
with another colluding, malicious virtual machine with a threshold
degree of certainty.

For the experimental setup, shown in figure 7, we hosted six vir-
tual machines on a Xen Server with one selected as the malicious
host receiver. This virtual machine attempts to verify its physical
location. From the remaining virtual instances, we chose at random
another to alternate between acting as a colluding virtual machine.
If the malicious host VM determined co-location during a period
that the chosen VM was colluding, a success was recorded. If it
determined co-location during a period that the chosen VM was
benign, a failure was determined and vice versa.

Figure 7: The black virtualmachine represents themalicious
host and the gray virtual machine represents the alternate
continual transmitter.

The chosen, colluding VM continuously transmits a signal com-
posed of time frames, fi , which is read once by the malicious host
VM, started on the Xen server.

Once the receiving process finishes this one time read of off the
central processing unit, it makes a binary decision, comparing the
read activity levels to a pre-determined threshold value. Based on
the lack of noise in the simplistic environment used for our imple-
mentation, the threshold can be set closer to the expected results.

Running this scenario two hundred times interspersed with
cases where co-location should be detected and should not, the
overall percentage of correct co-location detection was 97% under
the assumption of no concurrent, active processes that would
significantly impact the noise threshold of the channel.

This level of successful identifications was in part a result of
the increased length of each time frame, allowing to better aver-
age out any false positive readings. However, this did impact the
overall time necessary for the attack, bringing the minimum dura-
tion that the adversary needs to record the system for four time
frames to an average of 3.13295 seconds. The standard deviation
of this measurement between all experimental results was 0.2171
seconds. These results make this successful attack the longest of
the seven categories explored in our work. Further research may
be done using varied testing environments to better test the bound-
aries of this attack at larger scales.

Based on our initial survey of the cloud computing environ-
ment, there are two distinguishing variables to explore. First, the
increased levels of or variance in noise from surrounding processes.
Additionally, the partial processor co-location where a virtual in-
stance is allocated time on processors belonging to two or more
separate cores on the same server. Both factors listed are sufficient
to interfere with the success of an attack. Also, they are common
enough to be present in the majority of live cloud computing sys-
tems.

The one time reception of an unique signal which is transmit-
ted by a continuous sending process classifies this attack as opera-
tional across a channel. This attack creates an information leakage
between virtual machines which should otherwise be operating in
isolated segments of the hardware. The infiltration of the shared
hardware system by the transmitter allows the colluding process
to leave an artifact in a region of the server where the user is other-
wise not privileged to access. The success of this attack can then be
seen as a violation of privacy, an unauthorized escalation of privi-
leges, as well as a physical exploitation of the processor pipeline.

4.7 Covert Channel
The final category of attacks requires the continual operation of
both a transmitting process and a receiver process. This generates
a communication between two colluding applications located in
separate, co-located virtual machines.

For our experimentation, we used the same environment setup
aswith the previous attack implementations. This includes the Xen
server and six virtual machine instances which share all physical
cores available on the server. Additionally, we assumed that there
is a pre-arranged start and stop agreed on between both processes.
We assume there is a pre-established time frame duration in which
a single bit is measured. Testing under these conditions, the vari-
able of noise was included through either active or inactive, co-
resident virtual machines.

In the implementation of this attack, the two malicious hosts
each contain both side-channel processes, one sender and one re-
ceiver. The processes are alternated between to generate bi-way,
binary communication. A single test run included four bits trans-
mitted and received by both parties. A success wasmeasured when
more than two of the four bits recorded matched those that were
sent.

One virtual machine was designated as sending first and listen-
ing second, the other virtual machine took the opposite role. The
receiver finished recording the system after four time frames to
acquire the entire binary message. Following this, the transmitter
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residing on the same virtual machine began sending the designated
four bits. The duration of these two stages make up the length of
the communication attempted.

In order to maintain an average percentage of correctly received
bits, each time frame, fi , was found to be 0.95 seconds given only
the four idling virtual machines in the experimental settings. This
number may change depending on specific system variables. The
time frame duration raised the time to 3.80 seconds for a single
four bit message to be sent. This attack is the longest of the seven.
The standard deviation on one hundred tests was 0.13 seconds, the
third highest variance of the seven attacks.

Overall, the minimum time needed to generate a successful at-
tack, where more than half the total number of transmitted bits
are correctly received, increased. Further research into optimiza-
tion algorithms and communication protocols would undoubtedly
decrease this time. For instance, an example communications al-
gorithm may be implemented such that a single bit is transmitted
three times in a row and the receiver takes the most common bit
as the intended message.

One element of the communication channel is that it transmits
messages via a broadcast signal. All shared processor activity may
be received by any number of eavesdropping virtual machines
provided they use an identical receivers and a synchronized time
frame. Therefore, communicating parties using the hardware
side-channel cannot be certain that co-located processes are
unaware of the transmissions.

However, the processor side-channel may be considered to pro-
vide covert communications given the obscurity of the medium
over which the message is sent. The hardware processor provides
this covertness for our out-of-order execution channel as the ma-
jority of communication monitoring efforts target dynamic obser-
vation of active network traffic.While this attackwas implemented
to transmit and receive between a single malicious host and a sin-
gle malicious client application, there is potential for further attack
development.

The broadcast nature of the physical side-channel may be ex-
ploited in order to intentionally communicate with multiple vir-
tual machines containing a reception and transmission application.
Using multiple virtual machines colluding with a central malicious
host VM, a botnetmay be generatedwhich resides on a single phys-
ical server as outlined in Figure 8.

5 DETECTION OF ATTACKS
In our experiments, we assume that the data stored inside a virtual
machine is opaque to the hypervisor. Therefore, all that may be
used to detect side-channel exploitation is the dynamic interaction
between a virtual machine’s processes and the surrounding shared
hardware.

Recording full system activity over a period of time generates
records of distinct resource consumption patterns. The hypervi-
sor may then match these records with known resource consump-
tion habits that are not permitted. Advancements inmachine learn-
ing will further enhance the effectiveness of these techniques in
side-channel detection. Such areas for improvement include pat-
tern matching and hypervisors which dynamically learn new ma-
licious patterns.

Figure 8: A botnet which uses n bots that receive commands
and transmit responses to the Central Authority. Our CPU
side-channel acts as the C&C relay.

Additionally, some typical malware detection techniques
may also be applied for the detection of side-channels [12, 22].
Examples of techniques from this subset include monitoring
system calls, recording resource queries, and prohibiting repeated
behaviors on which side-channels depend. These techniques are
implemented at the hypervisor or host level. When such queries
occur, the intelligent hypervisor may decide whether the call is
blacklisted, whitelisted, or suspicious. Detection of communica-
tion behavior across the hardware not only discloses the presence
of a hardware side-channel exploit, but also uncovers what
malicious transmission is sent and received given the broadcast
property of the signal.

On average, protection methods which prohibit virtual
machines access to shared hardware resources are most effec-
tive [11, 13, 27]. However, such methods reduce the intended
performance of the cloud system.

Given the strong parallelism between network communication
and resource based side-channels, the application of signature,
anomaly, and pattern based detection techniques should be further
explored.

6 RELATEDWORK
Side-channels can be categorized into three classes [33]: time-
driven channels, access-driven channels, and trace-driven
channels.

Time-driven channels communicate through the execution time
of a program by measuring how it is affected by it’s input like
a cryptographic key. Osvik et al. show a time-driven channel in
which they trigger an encryption, evict the cache, and then trigger
a second encryption and time it [17]. Ranjith et al. assess covert
channels across VMs based on network timing [20].

Our channel is a cache-based, access-driven channel and is a di-
rect extension to [4][5]. Access-driven channels operate through
an attacker competing with the target program for some resource,
and the availability of that resource is affected specifically by the
input to the target program. Zhang et al. demonstrate an L1 instruc-
tion cache side-channel across VMs running on Xen with a sym-
metric multiprocessing system [33]. They apply their technique in
extracting an ElGamal decryption key across VMs. Percival shows
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that cache sharing between threads on a simultaneousmultithread-
ing CPU can be used as a medium for a covert channel [18] and
demonstrates the channel against OpenSSL. Wang et al. use the
contention of shared functional units among SMT processors and
look at cache usage on STM CPUs [28] . Saltaformaggio et al. es-
tablish a channel through locking and unlocking the memory bus
and focus on the construction of a hypervior-based defense to de-
tect memory locking side-channels [3]. Tromer et al. use cache
access patterns to determine process behavior, specially the use
of AES keys within the process [25]. Wu aet al. use the memory
bus as a covert channel [29]. Ristenpart et al. focus on establish-
ing co-residency between VMs in the cloud [21], and then applies
the prime+probe cache technique from [25][17][14] to establish a
covert channel. Irazoqui et al. use flush+reload on the L3 cache to
leak information about keys used in OpenSSL [10]. Xu et al. assess
the ideal models and experiments of existing L2 cache cross-vm
covert channels [30].

Trace-driven channels continuously measure some property
of the system which is affected by input, i.e. power consumption.
The authors in [1] present an efficient trace-driven cache attack
in which they measure the costs of the analysis phase against the
number of traces needed. The number of cache misses is taken
from the entire targeted machine. Another method of recording
full machine cache misses through electronic emanations is
presented by [6].

7 CONCLUSION
This channel is currently not optimized and is only capable of
sending small bit strings. This does however already provide for
a few useful scenarios; sending keys, sending triggers, sending
handshakes and authentication packets or hashes and similar
tasks. To optimize this channel we can add in error correcting
algorithms. These methods would allow for better thresholds
since the parity bits would correct for misread bits. While this
would make the channel more reliable it would also require more
periods per bit. This channel should also be able to adapt as a
multi-cast channel when there are any number of idle or noisy
but non adversarial virtual machines in play. For this either we
can have an adaptive threshold or use data network methods
such as measuring for the variance of the noise. Since our spikes
should have significance, this would help parse out what is and
is not noise, although it would not thwart an adversary who
is sending signals to interfere with ours. This channel can also
add in additional layers of security which are standard now in
communication theory. Currently it is a covert channel because
of how hard to detect the premise is, but if an adversary did know
this channel was potentially being used we would need actual
cryptographic layers of security to thwart their attacks.
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