
Firmly Rooted in Hardware:
Practical protection from firmware attacks in

hardware supply chain

Sophia d’Antoine
April 30, 2020

What brings us together (apart)

● Hardware Level Threats
● Discussed Techniques

○ Look at a few approaches for an attacker
○ What are the pros/cons on some of these, and relative difficulty

● Assessment Challenges
○ Some specific examples from our work in assessing these types of systems
○ How can we automate this

● Helping Defenders

All discussions of “Discussed Techniques” and attacks are based only on publicly available data.

VIRTUAL MACHINE

APPLICATIONS

DATA

HYPERVISOR

VIRTUAL ENVIRONMENT

OPERATING SYSTEM

FIRMWARE

HARDWAREHARDWARE

VIRTUAL MACHINE

APPLICATIONS

DATA

HYPERVISOR

VIRTUAL ENVIRONMENT

OPERATING SYSTEM

FIRMWARE

HARDWAREHARDWARE

{

VIRTUAL MACHINE

APPLICATIONS

DATA

HYPERVISOR

VIRTUAL ENVIRONMENT

OPERATING SYSTEM

FIRMWARE

HARDWAREHARDWARE

{

External Physical peripherals

PCB implants SoC/IC implants

“The Sandwich”

“A 3D package (System in Package, Chip Stack MCM, etc.) contains two or more chips (integrated
circuits) stacked vertically so that they occupy less space and/or have greater connectivity… TSVs
replace edge wiring by creating vertical connections through the body of the chips. The resulting

package has no added length or width.”
https://en.wikipedia.org/wiki/Through-silicon_via#3D_packages

Image CC-BY-SA Shmuel Csaba Otto Traian

“The Sandwich”

Original Image CC-BY-SA Shmuel Csaba Otto Traian

“The Add”

On a Board?
Can be legitimate: e.g.: move a component from one pad to another

Availability of different package sizes
Slight difference in board design - stability, specs, etc.

“The Add”

Inside a Package?
Can be legitimate: e.g.: flash memory package

Sold but has different configurations, or different memory internally
Wirebond down differently

Challenges to Attackers

“If any single contractor attempts to modify the designs, the manufacturing process is structured so
that those alterations would not match the other design elements in the manufacturing process.”

- Supermicro CEO

Images from https://trmm.net/Modchips
CC-BY Trammell Hudson

https://trmm.net/Modchips

Back to boot...

OTP (Core root of
trust – CRTM)

FSBL signed with
mfr key

Additional signed
bootloader stages Signed OS

Verified at every stage of boot, fail closed

Hash as a
deterministic
one-way function

Hash as infeasible
to generate w/o
source FW or to
collide

Integrity from
Signatures

Ability to Verify a Firmware Image Was Signed
by A Specific Entity

PCRs, in the real world

So… we have a bunch of hash values. What next?

Check that everything seems normal:
● Signatures: Components are signed by trusted authority
● Measurements: Final extended PCR value measured for specific state

Platform Attestation: “An operation that provides proof of a set of the platform’s integrity
measurements. This is done by digitally signing a set of PCRs using an AIK…” (TCG, 2011).

TPM

PCRs

Sign with AIK Host

Interposer

Extending AWESOME work done by NCC Group – TPM Genie
https://github.com/nccgroup/TPMGenie

Fun
happens

here

Host TPMExtend hash[0]Interposer

Signals on the bus

Host TPM

Random Please!

0x41 0x22 0xA1Nope!
0x00 0x00

Host TPM

Do a thing

Ok!!@”’)0

Other attacks

CVE-2018-6622 – remember those “extend only” PCRs?
● Power attacks
● Reset / modify PCR values

Bus tapping attacks
● 2010 attack alleging ability to recover keys after watching bus for 6 months

Many other alleged attacks by power analysis, back-doors, malicious update files, etc. etc. etc. google
“iPhone back door”

In Short

Source: https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

In Short

Source: https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

RELEASED
TODAY!

“It’s a backdoor with phone functionality,” quips
Gabi Cirlig about his new Xiaomi phone.

He’s only half-joking.

https://www.forbes.com/companies/xiaomi/

Code inside the com.android.browser.n3.d.class

Code inside the com.android.browser.n3.d.class

Code inside the com.android.browser.n3.d.class

… app use was being monitored by Xiaomi, as every
time he opened an app, a chunk of information would
be sent to a remote server

5
Program & Provis

ion

4
Producti

on Line

3
Compila

tio
n Tim

e

Back
doors

in Code

21
Secu

rit
y H

yg
iene

6
Dist

rib
utio

n Channel

7
Insta

lle
d

b Reverse
Engineering

a Build
System

1

Component

Desig
n

2

Hardware

Integratio
n

Why Care about Code?

Hardware backdoors
don’t operate alone

Binary Equivalence: Huawei

Work to validate them by HCSEC is
still ongoing but has already exposed
wider flaws in the underlying build
process which need to be rectified
before binary equivalence can be
demonstrated at scale... Unless and until
this is done it is not possible to be
confident that the source code examined
by HCSEC is precisely that used to build
the binaries running in the UK networks.

“

”
- UK HCSEC 2019.03
(emphasis added)

3
Compila

tio
n Tim

e
b Reverse

Engineering

a Build
System

Binary Equivalence - Multiple Steps

In Chips

When reading from the chips,
differences 0x00 vs 0xFF for
memory vs firmware

Wear leveling, old versions not
cleared, etc.

In Source Code

An attacker could hide via a
subtle logic bug; require
multiple preconditions

Very difficult to audit for --
especially when the general
code quality is poor.

In Compiled Firmware

If a reproducible, signed build
chain using trusted
components isn’t available…

Reverse engineer and do
program analysis to align all
parts of binary firmware to
code -- while dealing with
compiler optimizations/etc

Binary Only

PILOT: Bug Class Patterns

The Good News…?
● BinaryNinja: Reversers need a lifter.

Firmware has the “Problems of Yesterday”
● Stack buffer overflows
● Rare to have ASLR, DEP, Stack cookies
● Constant buffer sizes
● Unchecked bounds
● ...limitless possibilities

Indicators
● Vulnerable C functions:

○ strcpy, printf, system, memcpy, …
● Externally provided input with no checks

○ Max size assumptions

Example: Stack Buffer Overflow

int main(int argc, char** argv){
char buf[100];
char* input = argv[1];
strcpy(buf, input);

Why Automation

● Faster
● Manual is good for finding issues such as logic

bugs,
command injection, etc.

● Automation is good for finding issues such as:
○ when a binary library introduces issues

(e.g., chip vendor HAL)
○ items that get optimized out during

compilation (e.g., secure zeroize)
○ false positives due to analysis of dead code

(e.g., compiled out due to #ifdefs)
● Automated analysis run of update server’s

firmware update Good luck!

Huawei

Huawei

D-Link DIR-619L: Hardcoded Passwords

Keekoon KK001: Hardcoded Passwords

Other bug classes

- Changes to hardware interaction
- Failure to patch
- Lack of encryption
- Bug doors?
- Pattern of behavior possible to match

against, unlike hardware

Tenda AC10

Huawei: Source Code Review Fails

● The UK received uncompilable source code
● No guarantees that a binary or firmware blob running on purchased hardware matches source code
● Reversing firmware off the devices is time consuming but more accurate

Huawei Complains,
June 2019

Hardware Backdoors

● As we learned from the SuperMicro case these
are very hard to prove

● A true hardware backdoor is undetectable from
factory swapping a cheap part

● If you control hardware fabrication you control
the device

Common Design Pitfalls

1. Trusting OTA/update verification (without per-boot checks)
2. Leaving a secondary firmware load mechanism (e.g., JTAG set IP)
3. Relying on non-cryptographic verifications (e.g., CRC)
4. Not protecting the software that enforces the secure boot (mask

ROM, bootloader, etc)
5. Not verifying a fall-back recovery image/etc
6. Not planning for key revocation

Common Implementation Pitfalls

1. TOC/TOU
a. Especially on embedded

2. Insecure storage of the verification certificate
3. Inadequate control over firmware signing key
4. Leave a debug/development bypass or second key in production

compile
5. Waiting too long to try to implement it: secure boot does not ‘layer’ well

onto a product that is far along in development.

Practical steps

● Learn more!
○ NCC Group TPM Genie https://github.com/nccgroup/TPMGenie
○ A good primer: https://resources.infosecinstitute.com/uefi-and-tpm/
○ Zimmer et al paper:

http://download.intel.com/technology/efi/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

If you’re making/buying/reselling a product:
● Manage your supplier

○ Understand, end-to-end, your key management and provisioning process; audit mfr
software

● Implement appropriate testing
○ Burn image vs. chip dumps
○ Inspection for implants
○ Test your firmware early, often, before every release

